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The description of finite deformations of a continuous medium is related
to the use of tensors in the initial-state and the deformed-state spaces
with identical arrangements of indices (see [1 ]). In these two spaces
the identical Lagrangian coordinates &, &2, &3 of the particles of the
medium can be introduced with the covariant and contravariant base
vectors 3 and 5% (i = 1, 2, 3) in the deformed-state space or with the
base vectors 5; and »' in the initial-state space. The metrics of the
two considered spaces are different. If ds and ds denote the elementary
segments in the initial and the deformed states, respectively, we have

s o

d5? = g,qdEdE®, ds? = g, dE*dE" (Bap = (0013)s Zap = (> 35) (0.1)

We shall consider tensors as invariant objects related to the particles
of the medium subjected to a deformation process. Consider an arbitrary
tensor of the second rank in the deformed space

H= B350 = A5, 50 = 01,0505, = "5 5, (0.2)
. [o] o o [o]

In the initial space the tensors Hy, H,, H3 and H, can be established
whose covariant, mixed, and contravariant components are equal to the
respective components of the tensor H

Bi= 0530 H=A%3,58,  f,= A05%5,  B=A%55. (03

Sinceothe rising and lowering of indices employs different tensors,
&, and g,5, in the deformed and the initial spaces, the components of

o)

tensors Hi' different from these shown above, are not equal to the cor-
gesponding components of the tensor H. Similarly, to an arbitrary tensor
H in the initial space
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o

= H3%5f = A%,5,08 = 11,P5%5, = iP5, 3 (0.4)
correspond four tensors in the deformed space

Hy=H,5%5", Hy=A%5,5°, Hy= 1 5%, Hy=1°%5 5,  (0.5)
which have analogous properties. Furthermore, s%milar considerations can
be repeated with respect to the tensors H; and H; (i =1, 2, 3, 4), and
thus new groups of tens%rs can bhe established, etc. As a result, for the
original tensors H and H we obtain an infinite sequence of tensors in
the initial and the deformed spaces. In the following, we shall investi-
gate the laws governing the construction of the tensors in the sequences
established for the metric tenmsors, the tensors of finite deformation,
and for the derivatives of the tensors of the second order. We shall
show the applications of new tensorial characteristics in the derivation
of the equations of state of the medium and in the definitions of the
rates of stress.

1. Let us consider the metric tensors é and G of the initial and the
deformed states. According to Expressions (0.1) we have

_‘6‘3 ; 2 = g’ Béagg, G= gagQ 9 —63 5 o = 9 B; 35 L 1)
ch et nap e rn ra e e e oo fLa=8 (1
g :(9 , a0, g™ = (9‘1, %), O == (o, 9;3) = (9 ) 3,3) =0 (@ == B)

& ga'39 OB

The following tensors correspond to the tensor G in the initial space:

G =8g"3,3", A :gags %3P = g% gagaa = g7 8ng" dudg (1.2)
BzgaB-"a%"’g ngﬁoa -—gak g,L garss' @58

and the following tensors correspond to the tensor @ in the deformed
space:

o aA AQ o o !\a!\B A o -~ A -~ o f\;c A A
G =8g"9,9", = gaﬁs § = gacgaB""'a = gacgakg 39“98 (1.3)
-~ /\ A A AB ¢

B = g“ﬁaa 95 = g gcgaa o = gaké’ gaﬁa ?

As we see, the tensors having mixed components equal to the mixed
components of G and ¢ are also metric tensors; the tensors A(4) and B(B)
having covariant and contravariant components equal to the respective
components of G(G) are new tensors. The new tensors are obviously sym-
metric; they are, respectively, inverse: B = -1 B= A1 and the mixed
components of the tensors A= || ¢;*|| and B - || Ej‘lt, and 4 = || &j‘ﬁ

B- i gjill are equal
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o . I LR . A . Adg®
af =bi=g"8s b =ai=;"g,; (1.4)
The follow1ng tensors correspond, in turn, to the tensors A, A~ 1 and

, A1 in the initial and the deformed states:

B =0 3.9, G=guo"®  By=1"b" g0, (1.5)
N igfhed Aympani R G=Ehh (6)
B ==bz"3,5", G=gupd ", By = blb 25,5 (1.7)
A= ag"5,5%  Ap= geasaf8%", G =g, (1.8)

o O
from which only the tensors A,, B,, A, and B, are new. For them we have
the relations

] ] o o

A,— A, By,=Br=A4"  A,=4%, B,=B>=A47% (19

i.e. the new tensors can be expressed as the powers of the tensor 4 in
the initial state and the tensor A in the deformed state.

It is easy to notice the law obeyed by the tensors which are obtained
according to the indicated order of establishing the correspondence.
Thus, to the tensor A, for instance, correspond three tensors A~ 1, G,

-2 in the initial space. The first tensor A-1 , whose mixed components
are the same as those of the tensor A, has the exponent equal in absolute
value to that of A, but with the opposite sign. The second tensor
whose covariant components are the same as those of the tensor 4, is ob-
tained as the product of the first tensor and the tensor A. The third
tensor Z"z, whose contravariant components are the same as those of the

tensor A, is obtained as the product of the first tensor and the tensor
AL

It is easy to notice that this rule holds also for the tensors (1.2)
corresponding to the tensor G, and for the tensors (1.6) corresponding
to the tensor A~ 1, Analogous properties exist in the case of tensors
(1.3), (1. 7% and (1 8) of the deformed space, corresponding to the
tensors G 1 respectively.

This discussion shows that the process of formation of new tensors
consists of separate steps. Therefore, the rule outlined above will be
proved if its validity is shown for the n + lth step, assuming that it
is valid for the nth step.

According to the preceding discussion, at the nth step we have the tensors
A-n+ L A-n+ 2 A- n, An-1 , A " An=2? iy the initial space, and the
tensors A=t 1 A=R+ 2 g-n. gn—1 gn o An=2 ip the deformed space,
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with the tensors 3"", X", A~ ™ and A™ being new (the other tensors at
this step have already been discussed). Let us consider now the tensors
corresponding to these new tensors.

To the tensor

_ A gA A ~ a it S S A A A A sA A
A= Bjt ;0" = gia Bi%9%' = B,' g 99, Bt = be b, .. 07 (1.10)

J Gy

correspond three tensors in the initial space: the tensor with the same
mixed components is A", according to (1.4) and (1.10); the tensors with
the same covariant of contravariant components as A~ ™ have the mixed

components equal to a,’ Bj“ or Bai ja, i.e. they are obtained as the

products of the tensor AP and the tensor A or the tensor A~ 1. To the
tensor A~ " correspond thus the tensors Z", Z"*'l, X""l.

Similar discussion shows that to the tensor A” correspond the three
tensors A~ ", A—"+1 A-n-1 in the initial space and, furthermore, to
the tensors 2"” and 2" correspond the tensors A", A"+ 1, An— 1 and A~ "
A—n*+1 A=n-1in the deformed space. Consequently, the rule has been

L

proved.

We arrive thus at the conclusion that all the tensors obtained from
the metric tensors according to the scheme indicated above are the terms
of the sequences

A¥ Ak (1.11)

where k is a positive or negative integer, and | k| denotes the number of
the step which yields a given tensor of the sequence for the first time.

It is easy to see that the tensors (1.11) are symmetric and, in addi-
tion, the tensors A% and A~ * have identical mixed components, which
implies that their principal values and invariants are also identical.
The tensors A* and A~ #+ 1 have identical covariant components, and the
tensors A~ * and A*~ ! have identical contravariant components.

We denote by gi and @; (i = 1, 2, 3) the principal values of the
tensors A and A, respectively. The above discussion leads to the con-
clusion that the tensors (1.11) reduce simultaneously to the principal
axes and their principal values are aik and Eik (i =1, 2, 3), respect-
ively.

13 - o . 3
The quantities a; and ak are not independent. As mentioned, the

principal values of the tensors A and A~ ! are identical and, therefore

A

a; = a; ! (i=1,2 3) (1.12)
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We shall now consider the tensors which characterize finite deforma-
tions of a continuous medium. As a measure of strain, the following
difference is usually assumed:

)

ds? — d-;“z = 281Bd§“d§pv Eap = —;‘ (?370:8 - gaﬁ) (113)

. . . . 2 -
and two tensors of finite strain are considered: the tensor & in the
initial space and the tensor & in the deformed space. Their covariant
components are equal [2 ]:

& = e,59%5°, & = e,p5%5" (1.14)

These tensors are, as can easily be checked, linear functions of the
tensors A and A, respectively:

. L, .
8:—2—(14——6), é":;—(G—A) (1.15)

The reversed relations have the form
A=G+28 A=G—28 (1.16)

Using the method explained above, it is possible to establish the
sequences of tensors corresponding to the tensor & and & in the initial
and the deformed states. With the relations (1.15) and (1.16) and the
results of the preceding discussion, it is possible to show that these
sequences have the form

G+ 28)k8, (G—28)¢ (k=...—2, —1,0,1,2, ) (1A7)

At each step we obtain two new temsors in the initial space and two
tensors in the deformed space. Thus, at the nth step, the new tensors
are those corresponding to the following values of k : k= (-1)"s,

(-1)"n - 1.

We see that all the tensors of the sequences (1.17) are isotropic
tensor functions of the tensors & and & , respectively, and consequently
they are characteristics of finite deformations of a continuous medium,

We shall note some properties of the tensors (1.17), which are easily
deduced by the investigation of the relations between temsors in differ-
ent spaces. All the tensors (1.17) are symmetric. The tensors

G 2878, G280 m=....—2 t,0,1,2,..) (118)
have identical covariant components, the tensors

G125, (G—28"8 (m=...—2 —1,01,2,..) (1.19)
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have identical contravariant components, and the tensors
(G287 & (G—28)"'¢ m=...—2 —1,0,1,2,..) (1.20)

have identical mixed components and, consequently, identical principal
values and invariants.

In particular, for m = 0, the tensors & and € have identical co-
varlant components ¢,z determined by the relations (1.13). The tensors

= (G +28)% and @ = (G —2%)1& have identical contravariant com-

ponents

a 1 o ~a
BB:’Z(g‘q'—gB) (1.21)

and the tensors & and @ have identical mixed components

° ~ o A o g

6 . (gadgcﬁ - 6&5)1 ea — éaﬁ — _;;_ (gyaog_d.‘g _ éaﬁ) (1'22)

(]
We also note that, for m = 1, the tensors ® and & have identical
mixed components

b =% =+ (0% — £°%), 8" =S L8 — g.g™) (1.23)

From Expression (1.17) it follows that all the tensors corresponding
to the tensors & and & can be transformed simultaneously to principal
axes.

1f theoprincipal values of the finite-strain tensors & and & are de-
noted by ¢; and €; (i = 1, 2, 3), respectively, then the principal values
of the tensors of ‘the sequences (1.17) corresponding to the index k are
(1 +2¢ ) e , (1 =28 ) ; (i=1, 2, 3; no summation with respect to
the 1ndex L)

There exists a relation between the principal values €. and? Since
the mixed_ components and, consequently, the pr1nc1pal values of the
tensors & and @ are identical, we have ‘i =& (1= 2¢ )"' , 1.e. the
equality which relates the principal values of the f1n1t;e strain tensors.

Let us consider now arbitrary tensors of the second order determined
by the relations (0.2) and (0.4). These tensors may have identical either
the covariant components H and B OF the cog\travarlant components
Haﬁ and A%B or, finally, t,he mixed components H,* and H * ormxf}0 and H B,
In the following we shall call the quantities g the m1xed components
of the first type and the quantities Hﬁ the mixed components of the
second type.

. O - 3
Let us consider the case of the tensors H and H with equal mixed
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components of the first type

A

A% = H% = H"% (1.24)

To the tensor H correspond four different tensors in the initial
space. The first tensor, with the same mixed components of the first
type as the tensor H, is the tensor ﬁ,' according to (1.24). The other
tensors, with the same covariant, contravariant or mixed components of
the second type as the tensor H, have the mixed components of the first
type equal to

. Aem o

éacéakaB,Hacéck;’kB; gaoéckgheg Emg
respectively, and they are thus of the respective forms
AW, B A A 7 A

Similarly, to the tensor I‘i) correspond four different tensors H, AH,
HA™1, AHA™Y obtained in an analogous way.

Thus, at the first step the tensors corresponding to the tensors H
and H may be represented in the form

A™H A",  ATHAM (1.25)
where m and n are the numbers equal to 0, 1 and 0, -1, respectively.

It is easy to verify that, according to the relations (1.4) and (1.24),
to an arbitrary tensor of the type A®{A™ in the deformed space (m and n
are arbitrary integers, positive or negative, or equal to zero) corre-
spond the following tensors in the initial space: the tensor A~ *HA™™
with the same mixed components of the first type and the tensors
At-=gi- B AT 2ff-n- 1 A1-2FA-"=1 yith the covariant, contra-
variant and mixed components of the second type equal to the respective
components of the tensor A®HA". Similarly, to an arbitrary tensor

®HA"™ in the initial space correspond the following tensors in the de-
formed space: AT ®HA™ ™, A}~ BHA~" A~ RfA—n—1 pl-mpg -n- 1
i.e. the tensors derived are of the same form as the tensors (1.25).

This indicates that the tensors corresponding to the tensor A®HA™
are formed in the initial space according to the following rule: the
first temnsor, with the same mixed components of the first type, is ob-
tained by placing the sign over the factors of the tensor A*HA" and
changing the signs of m and n; the other tensors, whose covariant,
contravariant or mixed components of the second type are the same as the
respective components of the tensor A® HA®, are obtained by multiplica-
tion of the first tensor, in that order, by the tensor £ on the left
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side, by the tensor A= 1 on the right side, and simultaneously by the
tensor A on the left side and the tensor A~ ! on the right side. An
analogous rule holds for the formation of the tensors in the deformed
space which correspond to the tensor of the form A®B M in the initial
space. The application of this rule leads again to the tensors of the
form (1.25). Consequently, all the tensors corresponding to the tensors
H and H are of the same form (1.25).

In particular, if H and H are the metric tensors G and 8, then the
relations (1.25) result in the relations (1.11) derived previously.

If the tensors H and A have identical covariant, contravariant, or
mixed components of the second type, a similar discussion can show that
all the tensors corresponding to H and H will be also of the form (1.25),
and analogous rules for the formation of new tensors can be established.
For instance, if the tensors H and H have identical covariant components
H,p=H,z=H,5 we have the following rule. To the tensor A®HA"™ corre-
spond the following four tensors in the initial space: the first tensor,
having the same covariant components, is obtained by placing the sign °
over the factors of the tensor A® HA"™ and changing the signs of m and n;
the other tensors, having the same mixed components of the first type,
then the second type and, finally, the same contravariant components as
the tensor A® HA™ are obtained from the first tensor by multiplying on
the left side, then the right side and, finally, simultaneously on the
left and the right sides by the tensor £-1

AT AT AT AT, AT A A A,

If the tensors H and ﬁ are the finite-strain tensors & and & .
then, according to the relation (1.15), the products &A* and &4°
(where a 1s a positive or negative integer) obey the commutative rule,
and from the relations (1.25) follow the relations (1.17).

Let us note that the tensors (1.25) are, in general, not symmetric,
even if the tensors H and H are symmetric. Furthermore, it is easy to
show that among the tensors obtained at the steps 2k — 1 and 2k, & =
1, 2, ..., of the procedure, only the tensors of the sequence (1.25) for
which at least one of the numbers |m| and |n| is equal to k and the other
number is an arbitrary natural number from zerc to k (including k) are
new,

For instance, for k=1, i.e. at the first and the second steps, we

have the following new tensors

o

AH, HA, A'H, HA', AHA", A*HA, AHA, A'HA+
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in the initial space and similar temsors in the deformed space.
2. Let us discuss some applications.

a) In the following, we shall give a generalization [3 ] of a closed
system of the equations of thermo-elasticity of reversible processes,
under the assumption that the external heat input and one of the
potentials analogous to internal energy, free energy, heat content or
thermodynamical potential, related to the unit of mass, are given. In
the derivation of the equations of state, the finite strain temsors
and & defined by the relations (1.13) and (1.14) are usually assumed as
the characteristics of deformation. We shall show that if the deformation
of a medium is described in terms of the tensors © :6“'9’;@35 and O =

§%°5.95 , where 6 %2 are defined by the relations (1.21), an analogous
system of the equations of state can be obtained.

The elementary work per unit mass of the internal surface forces is

determined by

dA“hz__%-pwdew @B=1,2,3

where p is the density of the med;ium, P28 are contravariant components
of the stress tensor & = P™3, 95 or P = P**3, 5 9 in the initial and
the deformed states, respectively, and de,4 are the increments of the
covariant components of the tensors & and & defined by the relations

1
dea,’: =3 (Veva + Vavp) dt

ov - ~ nra O P »
Gpla = _% — v Fagh, lﬂaﬁk — i gAa ( Eo0r + 085 66’4;3)
og’ 2 A ST

with o = '5, = 0,5’ being the velocity vector of the particles of the
medium.

We shall consider that the components of all the tensors discussed
and the base vectors are functions of the Lagrangian coordinates £1, ¢2
&3 and time t.

If the expressions for the time derivatives of the base vectors [2 ]

© [ 2-1)
da; -0 dot (232- ol dAai e - (
dat i 07 W = Vil7 3, W = — al 2 (ay i=1, 2y 3)

are taken into account, then the relation de, aB = Bak ge,B d@*¢ can be
easily obtained and t.he work of internal forces expressed in the form
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i L :
dA( ) e ;Pkedgﬁe (:If, € == 1» 2: 3) (2‘2)

fa)
where Py, = peB é\kaé\ﬁe are the covariant components of the tensor P or
the tensor

< A ka
ogag: P}geé) 38.

We shall consider a medium for which the potentials analogous to the
internal enmergy and the free energy are given by the functions

U’:U(;:’“B? BQB’S9 Bis ey Ups gl’ EZ, Es)
F=F (g ©, T, n, ... wmt, & E8)=U—TS

Here S is the entropy per unit mass; T is the absolute temperature;
p; are certain independent physical and chemical parameters character-
izing changes of the physical and chemical properties of the medium
accompanying mechanical phenomena,

In the case of reversible processes corresponding to all possible
variations 8U, 85, 50%A, Su; or 8F, 8T,80%", 8y, the first and the
second laws of thermodynamics and Equation (2.2) lead to the relations

dav a0 af £ a
8 = i 08 -+ 205 86 - 2 by — T8 - L Bgde”®

oF aF of aF 1 2 @ (2.3)
6F:§‘T—6T—+-—~0—0-&T;66 8—}—5-!116”1:——56]1+—5Pa969 8

If the admissible increments 8S, 6%, dp;, or 8T, 50%, Sp; are
arbitrary, the equations of state, valid for any process, follow:

1 2 ou [ oF
“a‘ Paﬁ - (aeaﬁ.‘)s' By - (aoaﬂ )T, B (2~4)

(the remaining relations having the same form as in {3 ] are omitted).
It is clear that the use of the internal energy is more convenient in
adiabatic processes, while the use of the free energy is preferable in
isothermal processes. Equations (2.4) indicate that the quantities
Tag=P" 1 op may be used instead of 0°8 and the systems of variables
Taf S, u;, or Taps T, p; may be considered. Then a similar system of
equations can be written if the potentials analogous to the heat content
and to the thermodynamical potential are taken into account:

Y= W(é"lﬁ’ Taps S» Piy - ooy By El, ng §3) = "—TaBBqB
G = G(éﬂ(i’ Tup T7 Wiy oo vy Mgy gly §2, Ea) == F——‘L’aﬁeaa
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With the potentials ¥ and G Equations (2.3) assume the form

S — ﬂas+%araﬁ+ gfa w = 78S — 6%,

(2.9)
8G = 6T 4o arag + i = — ST — 0*Pé1,e

Hence, assuming that the variations 3, b‘raﬁ, 8;1', or 8T, 87,5, Op;
are 1ndependent we obtain the equations of state in the form

0 ( o )s L (afa )T'Hi (2.6)

Tap af

Expressions (2.4) and (2.6) have been derived with the use of the co-
variant components P of the éensors P3 and P, and the contravariant
components 028 of the tensors ® and ®. The equations of state can be also
derived using the components of the tensors P and @, or the tensors P,
and é, with different arrangement of indices.

Let us consider the tensors P and ©. The relations between different
components of the tensor ©® are determined by the equalities

0% = §,%g% = 8, (¢°* — 26°%) (2.7
0% = B0y g = B (¢2F — 207) (¢ — 20) (2.8)
Differentiating these equalities, we obtain the equations
(2.9)
Y A Ry gnap o A m «
= (8" -+ 20,1 d0%%,,  db, =g, g (886" + 28, 85" -+ 236,™)do*F
We shall consider that the potentials U and F are functions of the
mixed or the covariant components of the tensor ®. Then, using the rela-

tions (2.9) and shifting the indices of the components of the tensor P,
the equations of state (2.4) can be written in the form

1 20 1~ . A A oF
Lppr Ly pw_ +29a( ) = (8" 4 26 ( ) 2.10
o o éal ( ) ep' Sy ( + ) BOHA Ty ( )

or

1 mn oUu BU A 3U
1p :<A 428, ( +29;}“(A)
p aemn "S i mi )S,{L ae).n S,u
oF ) oF A m oF
= (25 28 ( + 26, ( ) 2.11
(36 T,py aemp >T,ui ae)\n)T,lxi ( )

The relations (2.10) and (2.11) give the expressions for the mixed
and the contravariant components of the tensor P.
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Let us consider now the tensorg 133 and ©. The mixed and the contra-
variant components of the tensor ® are determined by

b= & 0 Oae = gfcké;e__ﬂ"” (2.12)

ea

Since the components of the metric temsor ¢ do not depend on time,
the differentiation of Expressions (2.12) gives

dif =g dd",  db,. = g8, db" (2.13)
and, consequently, instead of (2.4) we have the equivalent relations
’l:ka :% pkegm (;;U ) (%)T»M
:wﬁ,‘f"“ S (i’r\w (;6’; ). (2.14)

which give the expressions for the mixed and the contravariant components
of the tensor P;. In a similar way, from Equation (2.6) the expressions
for the mixed and the contravariant components of the tensor & follow:

P («W) :_M(aoo> ,ém::——(i’) :_G%%)TM@AS)

o] 0T
& at,” T at ") S

S.pi

It is easy to verify that the relations (2.10) and the first of the
relations (2.14) can be written in the form

1 < g oUu OF
LhS = () = ( ) (2.16)
p L de " S.u; de " Toug
1 Ae e ote [OU oF
i = 6 ""Zi‘»g ( ~ I = a —2 < Nk
LBy = ) 8%&)3% ( o),
9 ) o o -~ .
where P.7 = g, le’ =g kfkm €, k- g’"e,rq are mixed components
of the tensors P, &, & , respectively. The relations (2.16) were de-

rived in [ 3],

b) In the theory of finite deformatmn it is more convenient to con-
sider instead of the temsor P = P**3,3, the tensor s = g% 3293,
525 = 1/pP*P | because the quantities o® %8 have a potential.

We shall introduce four different definitions of the rates of the
tensor o, and we shall show that one of them coincides with the defini-
tion proposed by Truesdell [4]. In addition to the convected coordinate
system, we introduce a fixed coordinate system in the deformed space x!,

x2, x3, with the base vectors 3;, 9%, i =1, 2, 3. Without limiting the



Finite deformations of a continuous medius 765

generality of this discussion, we assume that this new reference system
is Cartesian. To the tensor

A Bra

6 = %5405 = 55 9ad" = 040" 35 = Sapd” 9" = 0'%%0493 (2.17)

correspond four different tensors in the initial space

Ay O v A poo0
ao 9 0.0

° (9 ° a
6, = 6%83,3y, 52 =5 3949, O3= Gg 9 93, 54 = Gqed 9

° -
The different rates V;, i = 1, 2, 3, 4 of the tensor o are defined as
the time derivatives of the temsors o;:

Aa A g A
dcaﬁ o o o do B2 °g o, dsa' 040 o dcaﬁ (L
Vi= 85, Vo= 709", V= %9 Vi= a%"

dt

The expressions for the components of these tensors can be obtained
by d1fferent1at1ng the tensor o in the invariant forms (2.17). Using Ex-
pressions (2.1) for the time derivatives of the base vectors 3 and 3
and taking into account the fact that the reference system is Cartesian
and consequently

dst da

F7A =0

we obtain from the differentiation of (2.17)

ds ‘dGaB . . PN 'a—-"a . n R
dt (d_t + 6% Vv 4 g%k Vk”‘g) dadp = (Ttﬁ -+ "5 V" —'Gakvﬁvk> 9,8
(ds, P . 3 A Agh
= (W——Ghv vF + G, V/.UB) 5%, = ( rr —skgvavk—sangvk> %"

‘apraB
I%((“;:

113 k
- P70 ) 9293

N

Here the equality 6”-*# = 1/p P**F and the continuity equation

d " A "
—f Fp V' =0, v=r1ky = vk,
have been utilized.

Assuming that at the instant of time being considered the base vectors
2; and 9; coincide, we obtain the relations which hold in the curvi-
linear coordinate systems:

ds*®  gpef ap k kp Ov* ak 008
pg =g TP Vet =P — P
A ’ k
dGaB dP a a E a av
P FTE —|— P ka + Pk P

(2.18)



766 V.D. Bondar’

d%aB ap’ p 6 ov® x a2t
== L b ‘—/1 . ,‘k . k —_—— U

p dt at | pa N ]‘7, i P .B 0:[@ pa axk
d3,5 APy A oot o0k
P =g+ PusVirh -+ Pkﬁ(;;E+PakémB

In a Cartesian coordinate system the positions of the indices are
immaterial and the first of Expressions (2.18) coincides with the de-
finition of the rate of stress proposed by Truesdell.

It is easy to see that the invariants of the tensor o coincide with
the invariants of the tensgrs o, and 03, and they are different from the
invariants of the tensors o, and 0,. Obviously, the time-derivatives
of the invariants of the temsors o, 0,, 0, become equal to zero with the
tensors V, or V,, and the time-derivatives of the invariants of the

tensors 0, or 0, become equal to zero with the temsors V) or V,, respect-
ively,

We note that with the relations

[ ° o o

o o o o o
Gy = 51 4, o3 = Agy, 6y = Ac A

the following relations for the rates of the temsor ¢ can be easily de-
rived:

3

Vo=V, (G -+ 2E) 4 25,e, Vo= 2e5, -+ (G4 2NV,
Vy =205, (G -+ 2E) 4 (G + 2&) V, (G = 2E) + 2(G -+ 2E) 5.e

[e]
where e is the deformation-rate tensor.

The problems considered show that the proposed tensorial character-
istics may be used in the discussion of different questions of the theory
of finite deformations.
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