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The description of finite deformations of a continuous medium is related 
to the use of tensors in the initial-state and the deformed-state spaces 
with identical arrangements of indices (see [ 11 ). In these two spaces 
the identical Lagrangian coordinates 5’. e2, c3 of the particles of the 
medium can be introduced with the covariant and contravariant base 
vectors 21 and ii (i = 1. 2, 3) in the deformed-state space or with the 
base vectors Zi and ii in the initial-stake space. The metrics of the 
two considered spaces are different. If ds and ds denote the elementary 
segments in the initial and the deformed states, respectively, we have 

We shall consider tensors as invariant objects related to the particles 
of the medium subjected to a deformation process. Consider an arbitrary 
tensor of the second rank in the deformed space 

(0.2) 

In the initial space the tensors iI, &# i3 and i4 can be established 
whose covariant, mixed, and contravariant components are equal to the 
respective components of the tensor H 

Sinceothe rising and lowering of indices employs different tensors, 
gab and gapI in the deformed and the initial spaces, the components of 

tensors ii, different from these shown above, are not equal to the cor- 
$esponding components of the tensor H. Similarly, to an arbitrary tensor 
H in the initial space 
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correspond four tensors in the deformed space 

which have analogous properties. Furthermore, skmilar considerations can 

be repeated with respect to the tensors Hi and Hi (i = 1, 2, 3, 4). and 

thus new groups of tenssrs can be established, etc. As a result, for the 

original tensors If and B we obtain 8n infinite sequence of tensors in 

the initial and the deformed spaces. In the following, we shall investi- 

gate the laws governing the construction of the tensors in the sequences 
established for the metric tensors, the tensors of finite deformation. 
and for the derivatives of the tensors of the second order. We shall 

show the applications of new tensorial characteristics in the derivation 
of the equations of state of the medium 8nd in the definitions of the 

rates of stress. 

1. Let 11s consider the metric tensors 8 and G of the initial and the 
deformed states. According to Expressions (0.X) we have 

‘Ihe following tensors correspond to the tensor G in the initial space: 

and the following tensors correspond to the tensor 8 in the deformed 
space: 

As we see, the tensors having mixed components equal to 

components of G and 8 are also metric tensors; the tensors 

having covariant and contravariant components equal to the _. 

ii 
he mixed 

(A) and k?(B) 

respective 

components of G(G) are new tensors. The new tensors are obviously sym- 

metric; respectively inverse: 8 = 2-l B = A-’ and the mixed 

=o~neo~~~~~ tensors I= ii gji 11 and B = 11 i ji If , 

B = 11 gii 11 are equal 

and A = 11 aji \I 
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(I.41 

lhe following tensors correspond, in turn, to the tensors A, A-’ and 
R, x-1 in the initial and the deformed states: 

B = &pa, ;, Y, & = ~$V, $2 = YT.l/ ObekieGa & (1.5) 

:4 = &“&P, AZ =~,,&.e;~=;a;~, & = p;,& (l-6) 

B = ^bpa;a;P, G = &,&?, & = ?$b,“~“‘;,;~ (1.7) 

A = i&“;a;P, A, = &&,eii,a;a; , P G zz iap& &, (1.8) 

from which only the tensors &, & A, and B, are new. For them we have 
the relations 

A, = 3, &, z.z 9 Z J-2, A, = A2, B2 zzz B2 _zz K2 (1.9) 

i.e. the new tensors can be expressed as the powers of the tensor SO zn 
the initial state and the tensor A in the deformed state. 

It is easy to notice the law obeyed by the tensors which are obtained 
according to the indicated order of establishing the correspondence. 
Thus, to the tensor A, for instance, correspond three tensors i- 1, 6, 

1-2 in the initial space. ‘Ihe first tensor K- 1, whose mixed components 
are the same as those of the tensor A, has the exponent equal in absolute 
value to that of A, but with the opposite sign. ‘Ihe second tensor 8, 
whose covariant components are the same as those of the tensor A, is ob- 
tained as the product of the first tensor and the tensor 1. The third 

tensor R- 2, whose contravariant components are the same as those of the 
tensor A, is obtained as the product of the first tensor and the tensor 
-1 A . 

It is easy to natice that this rule holds also for the tensors (1.2) 
corresponding to the tensor G, and for the tensors (1.6) corresponding 
to the tensor A- l. Analogous properties exist in the case of tensors 
~~n~~rs(~~ 78’ ;ad1il ;f 1 rofp~~;i~;~;med space, corresponding to the 

‘lhis discussion shows that the process of formation of new tensors 
consists of separate steps. Therefore, the rule outlined above will be 
proved if its validity is shown for the n + lth step, assuming that it 
is valid for the nth step. 

According to the preceding discussion, at the nth step we have the tensors 

I- n+ ‘, I- ‘+ *, I- “; in- ’ , J! n I”- * in the initial space, and the f 

tensors A- n+ l, A- n+ *, A- n; A n- 1 , An, An- * in the deformed space, 
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with the tensors Hsn, iin, A-” and A” being new (the other tensors at 
this step have already been discussed). Let us consider now the tensors 
corresponding to these new tensors. 

To the tensor 

V. D. Bondar ’ 

correspond three tensors in the initial space: the tensor with the same 

mixed components is In, according to (1.4) and (1.10); the tensors with 
the same covariant 05 costravariant components as A-’ have the mixed 
components equal to aa’ Bja or B, e i &.“, i.e. th ey are obtained as the 

products of the tensor 1” and the teisor 1 or the tensor R- ‘. To the 
tensor Amn correspond thus the tensors A)n, jn+ 1, jn- 1 

Similar discussion shows that to the tensor A” correspond the three 
tensors I- nA R- n+ W- n - ’ in the initial space and, furthermore, to 
the tensors -‘and n correspond the tensors A”, A”+ ‘, A”- 1 and A- n, 
A-“+1 A-“-’ 

proved. ’ 
in the deformed space. Consequently, the rule has been 

We arrive thus at the conclusion that all the tensors obtained from 
the metric tensors according to the scheme indicated above are the terms 
of the sequences 

“k n ) A” (1.11) 

where k is a positive or negative integer, and 1 kI denotes the number of 
the step which yields a given tensor of the sequence for the first time. 

It is easy to s,ee that the tensors (1.11) are syuxnetric and, in addi- 
tion, the tensors Rk and A- ’ h ave identical mixed components, which 
implies that their princi 

f 
al 

l’be tensy.?l and A 
values and invariants are also identical. 

- ‘+ have identical covariant components, and the 
tensors and Ai- ’ have identical contravariant components. 

We denote by ‘i and a^i (i = 1, 2, 3) the principal values of the 
tensors 1 and A, respectively. The above discussion leads to the con- 
clusion that the tensors (1.11) reduse simul~~ly to the principal 
axes and their principal values are aik and ai (i = 1, 2, 3), respect- 
ively. 

The quantities a0. and Q”i are not independent. As mentioned, the 
principal values of ‘the tensors A and I- ’ are identical and, therefore 

n o -1 ni = ai (i = 1, 2, 3) (1.12) 
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We shall now consider the tensors which characterize finite deforma- 
tions of a continuous medium. As a measure of strain, the following 
difference is usually assumed: 

ds2 - d12 = 2e,pd$adtP, 
0 

&?p = -+- (&3 - ” baP ) (1.13) 

and two tensors of finite strain are considered: the tensor &’ in the 
initial space and the tensor 8 in the deformed space. ‘lheir covariant 
components are equal [ 2 1 : 

it = EQ& ) “P % = Eap 2;” (1.14) 

These tensors are, as can easily be checked, linear functions of the 
tensors 1 and A, respectively: 

&+(Le), 8= $(G-A) (1.15) 

The reversed relations have the form 

A = i?; + 28, A=G-228 (1.16) 

Using the method explained above, it is possible to establish the 
sequences of tensors corresponding to the tensor 8 and 8 in the initial 
and the deformed states. With the relations (1.15) and (1.16) and the 
results of the preceding discussion, it is possible to show that these 
sequences have the form 

(G+ 28)%, (G - 28)“8’ (k = . . .-2, -1, 0, I, 2,. . .) (1.17) 

At each step we obtain two new tensors in the initial space and two 
tensors in the deformed space. Thus, at the nth step, the new tensors 
are those corresponding to the following values of k : k = ( - l)“n, 
(-l)"n- 1. 

We see that all the tensors of the sequences (1.17) are isotropic 
tensor functions of the tensors 8 and 8, respectively, and consequently 
they are characteristics of finite deformations of a continuous medium, 

We shall note some properties of the tensors (1.171, which are easily 
deduced by the investigation of the relations between tensors in differ- 
ent spaces. All the tensors (1.17) are syrnnetric. ‘Ihe tensors 

(C _t- 2@%, (G - 28’)~“8 (m = . . . .-2, --1, o, 1, 2,. . .) (1.18) 

have identical covariant components, the tensors 

(6 + 2@+9, (G - 28)~“9% (m=... -2, -1,0,1,2 )...) (1.19) 
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have identical contravariant components, and the tensors 

(G -j- 2&T?, (G - 28)“‘~-‘8 (m= . .-2,-l,O,l,:! ,...) (1.20) 

have identical mixed components and, consequently, identical principal 
values and invariants. 

In particular, for m = 0, the tensors 8 and 8 have identical co- 
variant components 6 a~ determined by the relations (1.13). lhe tensors 

6 = (G + a&-l@ and Q = (G - 2$)-‘8 have identical contravariant com- 

ponents 

fl”P = ; (i” - i”“), (1.21) 

and the tensors 6’ and 0 have identical mixed components 

Lap = ij”p z.z $ (~~a& - (Fp), ;,p = I$” =+ (&oi”:3 - 6,b) (1.22) 

We also note that, for m = 1, the tensors 6 and % have identical 
mixed components 

From Expression (1.17) it follows that all the tensors corresponding 
to the tensors $ and 8 can be transformed simultaneously to principal 
axes. 

If theoprincipal values of the finite-strain tensors 8 and 8 are de- 
noted by c i and Ei (i = 1, 2, 3), respectively, then the principal values 
of theotensors of the sequences (1.17) corresponding to the index k are 

k” (l + 2r i) ~ i, (1 - 2~i) kPi (; = 1, 2, 3; no summation with respect to 
the index i). 

‘lbere exists a relation between the principal values Fi and 2 i. Since 
the mixed components and, consequently, the principal values of the 
tensors 8 and 0 are identical, we have Fi = 2i(l -2Fi)-l, i.e. the 
equality which relates the principal values of the finite-strain tensors. 

Let us consider now arbitrary tensors of the second order determined 
by the relations (0.2) an! (0.4). ‘lhese tensors may have identical either 
the covariant components Hap and fs QB or the cogravarisnt co 

T 
nents 

$a and fiaB or, 
In the 

finally, the mixed components H a and Hpa or ap and fiab. 
following we shall call the quantities $ “s the mixed components 

of the first type and the quantities Hp" the mixed components of the 
second type. 

Let us consider the case of the tensors H and fi with equal mixed 
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components of the first type 

Asp = tiGe = HQ@ (1.24) 

To the tensor H correspond four different tensors in the initial 
space. The first tensor, with the same mixed components of the first 
type as the tensor H, is the tensor 8, according to (1.24). The other 

tensors, with the same covariant, contravariant or mixed components of 
the second type as the tensor H, have the mixed co~onents of the first 
type equal to 

respectively, and they are thus of the respective forms 

Similarly, to the tensor 8 correspond four different tensors H, AH, 
HA-‘, AHA- ‘, obtained in an analogous way. 

Thus, at the first step the tensors corresponding to the tensors H 
and 8 may be represented in the form 

A”kd”, AmHA” (1.25) 

where m and n are the numbers equal to 0, 1 and 0, -1, respectively. 

It is easy to verify that, according to the relations (1.4) and (1.24), 
to an arbitrary tensor of the type A8HAn in the deformed space (RI and n 
are arbitrary integers, positive or negative, or equal to zero) car e- 
spond the following tensors in the initial space: the tensor A)- aI&- s 
with the same mixed components of the first type and the tensors 
wl- Muir- n, Al- 88R- n- ‘, wl- a#j- n- ’ with the covariant, contra- 
variant and mixed components of the second type equal to the respective 
izrents of the tensor A” HA”. Similarly, to an arbitrary tensor 

n in the rrutlal space correspond the following tensors in the de- 
formed space: A-“HA’“, A”‘HA’“, A-‘HA-“-‘, A1-RHA’“-l, 
i.e. the tensors derived are of the same form as the tensors (1.25). 

This indicates that the tensors corresponding to the tensor AmHAn 
are formed in the initial space according to the following rule: the 
first tensor, with the sameomixed components of the first type, is ob- 
tained by placing the sign over the factors of the tensor A’HA” and 
changing the signs of A and n; the other tensors, whose covariant, 
contravariant or mixed components of the second type are the same as the 
respective components of the tensor AmHAn, are obtained by multiplica- 
tion of the first tensor, in that order, by the tensor 1 on the left 
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side, by the tensor R- l on the right side, and simultaneously by the 
tensor R on the left side and the tensor K- l on the right side. An 
analogous rule holds for the formation of the tensors in the deformed 
space which correspond to the tensor of the form 1s fiRa in the initial 
space. The application of this rule leads again to the tensors of the 
form (10.25). Consequently, all the tensors corresponding to the tensors 
H and H are of the same form (1.25). 

In particular, if H and i? are the metric tensors G and 6, then the 
relations (1.25) result in the relations (1.11) derived previously. 

If the tensors H and I?? have identical covariant, contravariant, or 
mixed components of the second type, a similar discussion can show that 
all the tensors corresponding to H and I? will be also of the form (1.25), 
and analogous rules for the formati%n of new tensors can be established. 
For instance, if the tensors H and H have identical covariant components 

fiaa = fiaP = flap, we have the following rule. To the tensor A”HA” corre- 
spond the following four tensors in the initial space: the first tensor, 
having the same covariant components, is obtained by placing the sign o 
over the factors of the tensor A”HA” and changing the signs of m and n; 

the other tensors, having the same mixed components of the first type, 
then the second type and, finally, the same contravariant components as 
the tensor A”HA” are obtained from the first tensor by multiplying on 
the left side, then the right side and, finally, simultaneously on the 
left and the right sides by the tensor I- ‘: 

A o --m fj p, i;-ln-l & p, A-” & p&-l, A-tl-1 & py 

If the tensors H and H” are the finite-strain tensors 8 and 8 
then, according to the relation (1.15), the products 8d” and $A”’ 
(where a is a positive or negative integer) obey the coannrtative rule, 
and from the relations (1.25) follow the relations (1.17). 

Let us note that the tensors (1.25) are, in general, not symnetric, 
even if the tensors H and l? are symmetric. Furthermore, it is easy to 
show that among the tensors obtained at the steps 2k - 1 and 2k, k = 
1, 2, . ..) of the procedure, only the tensors of the sequence (1.25) for 
which at least one of the numbers 1 ml and In ( is equal to k and the other 
number is an arbitrary natural number from zero to k (including k) are 
new. 

For instance, for k = 1, i.e. at the first and the second steps, we 
have the following new tensors 
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in the initial space and similar tensors in the deformed space. 

2. Let us discuss some applications. 

a) In the following, we shall give a generalization [ 3 1 of a closed 
system of the equations of thermo-elasticity of reversible processes, 
under the assumption that the external heat input and one of the 
potentials analogous to internal energy, free energy, heat content or 
thermodynamical potential, related to the unit of mass, are given. In 
the derivation of the equations of state, the finite strain tensors 8 

and 8’ defined by the relations (1.13) and (1.14) are usually assumed as 
the characteristics of deformation. We shall show that if the deformation 
of a medium is described in terms of the tensors 6 = 8’“&& and 0 = 

Oa%&j , where 8 ab are defined by the relations (1.21), an analogous 
system of the equations of state can be obtained. 

lhe elementary work per unit mass of the internal surface forces is 
determined by 

where p is the densityOof the medium, 
of the stress tensor 9 = Pub;, ip 

Pap are contravariant components 
or 9 = FaP3^a & in the initial and 

the deformed states, respectively, and dcab are the increments of the 
covariant components of the tensors 8’ and 8 defined by the relations 

with V= zii si = viii being the velocity vector of the particles of the 
medium. 

We shall consider that the components of all the tensors discussed 
and the base vectors are functions of the Lagrangian coordinates t’, t2, 
c3 and time t. 

If the expressions for the time derivatives of the base vectors [ 2 ] 

dii 

ut - 0, -$ = 0, 
2,. 

(2.1) 
$- = 7i~Uia, $,T = _ vaviiO1 (% i=l, 2, 3) 

are taken into account, then the relation dc ap = 
easily obtained and the work of internal forces 

gao) geB deke can be 
expressed in the form 
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dA@’ = _I $&,&jke (A-,e=1, 2, 3) (2.2) 
A 

where Pkc = are the covariant components of the tensor P or 
the tensor 

pap tkai2Be 

We shall consider a medium for which the potentials analogous to the 
internal energy and the free energy are given by the functions 

Here S is the entropy per unit mass; T is the absolute temperature; 
pi are certain independent physical and chemical parameters character- 
izing changes of the physical and chemical properties of the medium 
acco~~ying mechanical phenomena. 

In the case of reversible processes corres 
variations S/J, 6S, 68d, 6~i or SE’, 6T, 6ea B 

onding to all possible 
,6c1i, the first and the 

second laws of thermodynamics and Equation (2.2) lead to the relations 

If the admissible increments 6S, 6 P@, Eli, or ST, 6 eaB, Spi are 
arbitrary, the equations of state, valid for any process, follow: 

(2.4) 

(the remaining relations having the same form as in 13 1 are omitted). 
It is clear that the use of the internal energy is more convenient in 
adiabatic processes, while the use of the free energy is preferable in 
isothermal processes. 

- 1s 
Equations (2.4) indicate that the quantities 

‘afi= P aB may be used instead of OaB and the systems of variables 
r a@$ S, Pi, or r,+a T, pi may be considered. Then a similar system of 
equations can be writtan if the potentials analogous to the heat content 
and to the theistical potential are taken into account: 
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With the potentials Y? and G Equations (2.3) assume the form 

Hence, assuming that the variations 6S,6r,~, 6pi, or 6T, 6r,p, 6pi 
of state in the form are independent, we obtain the equations 

0 
a,$ (2.6) 

lkpressions (2.4k and (2.6) have bezn derived with the use of the co- 
and P, and the contravariant variant components Pas of the ensors P, 

components 8aS of the tensors b y and 0. The equations of state can be also 
derived using the components of the tensors P and 0, or the tensors 8, 
and 6, with different arrangement of indices. 

Let us consider the tensors P and 0. The relations between different 
components of the tensor 0 are determined by the equalities 

Differentiating these equalities, we obtain the equations 
(2.9) 

We shall consider that the potentials U and F are functions of the 
mixed or the covariant components of the tensor 0. ‘Iben, using the rela- 
tions (2.9) and shifting the indices of the components of the tensor P, 
the equations of state (2.4) can be written in the form 

(2.10) 
S-Pi r*tLi 

or 

(2.11) 

‘Ihe relations (2.10) and (2.11) give the expressions for the mixed 
and the contravariant components of the tensor P. 
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Let us consider 
variant components 
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now the tensors fi and 6. Ihe mixed and the contra- 
of the tensor 6 a& determined by 

(2.12) 

Since the components of the metric tensor 8 do not depend on time, 

the differentiation of Expressions (2.12) gives 

;,k~vT&k” (2.13) 

the equivalent relations 

(2.14) 

which give the expressions for the mixed and the contravariant components 
of the tensor $ 3_ In a similar way, from ration (2.6) the e 

!!Y 
ressions 

for the mixed and the contravariant components of the tensor * follow: 

It is easy to verify that the relations 12.10) and the first of the 
relations (2.14) can be written in the form 

(2.16) 

where 8sP = g",k!' ko , 2," = g EkC, eC = g ’ rk Ak A k,r eTo. are mixed components 

of the tensors B, 8, 8 , respectively, The relations (2.16) were de- 
rived in E3 1. 

b) In the theory of finite deformation it is more convenient to con- 
sider instead of the tensor P = PUP&& the tensor 3 = ~%~3~1, 
$A% 1 l/pl'"P , because the quantities u ap have a potential. 

We shall introduce four different definitions of the rates of the 
tensor o, and we shall show that one of them coincides with the defini- 
tion proposed by Truesdell 14 1. In addition to the convected coordinate 
system, we introduce a fixed coordinate system in the deformed space x1, 
X2, x3, with the base vectors ai, si, i fl= 1, 2, 3. Without limiting the 
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generality of this discussion, we assume that this new reference system 
is Cartesian. To the tensor 

correspond four different tensors in the initial space 
0 CO ” 
6, = 6%Ja3[3, 5‘2 = ;“&;i3, i3 = &W~, ;, = “o,$P 

The different rates pi, i = 1, 2,03, 4 of the tensor u are defined as 
the time derivatives of the tensors oi: 

‘Ihe expressions for the components of these tensors can be obtained 
by differentiating the tensor u in the invariant forms (2.17).*Using Ex- 
pressions (2.1) for the time derivatives of the base vectors 3i and ii 
and taking into account the fact that the reference system is Cartesian 
and consequently 

dsi dai 
-0 dt=dt- 

we obtain from the differentiation of (2.17) 

Here the equality o’.~B = l/p Pr.ap and the continuity equation 

g + p VkVfk = 0, i = & = u’R3k 

have been utilized. 

n Assuming that at the instant of time being considered 
ai and 3i coincide, we obtain the relations which hold 

linear coordinate systems: 

the base vectors 
in the curvi- 

(2.18) 
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In a Cartesian coordinate system the positions of the indices are 

immaterial and the first of Expressions (2.18) coincides with the de- 

finition of the rate of stress proposed by Truesdell. 

It is easy to see that the invariqts of the tensor o coincide with 

the invariants of the tensgrs u2 gnd u3, and they are different from the 

invariants of the tensors u 1 and 04.,,0bvj,ously, the time-derivatives 

of the invariants of the tensors u, uZ, o3 become equal to zero with the 

tensors & or t3, an t e time-derivatives of the invariants of the d h 

tensors aI or u4 become equal to zero with the tensors VI or B 
ively, 

(, respect- 

We note that with the relations 

the following relations for the rates of the tensor u can be easily de- 

rived: 

0 

where e is the deformation-rate tensor. 

The problems considered show that the proposed tensorial character- 

istics may be used in the discussion of different questions of the theory 

of finite deformations. 
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